Восстановление данных с монолитных SD и MicroSD карт. Распиновка Secure Digital (SD) card Microsd распиновка контактов


Всем доброго дня! Сегодня мы поговорим о подключении карты памяти SD к микроконтроллеру STM32.

Казалось бы, памяти полно у контроллеров STM32F10x, зачем там еще дополнительная, но это впечатление обманчиво) Вот, например, надо нам на дисплей вывести пару-тройку разных изображений – формат 320*240 – то есть 76800 пикселей, каждому из которых соответствует целых 2 байта. Вот и получаем около 150 кБ на одну картинку. А это немало по меркам микроконтроллера, и не факт, что две разные картинки удастся запихать в его Flash память. Или надо нам хранить большие объемы информации, данные с какого-нибудь датчика, к примеру. Да еще так, чтобы эти данные были доступны и после отключения питания. Вот тут то нам и пригодится внешняя память. И отличным решением будет SD карта памяти или MMC. К слову в этой статье мы будем проводить опыты над картой micro SD .

Для начала пара слов о самой карте памяти, точнее о ее распиновке. Выглядит все это дело следующим образом:

Итак, что тут у нас? Ну сразу видно, что выводов у нее целых восемь штук. Назначение выводов следующее (слева направо):


Колонка SPI Mode нам намекает на то, что взаимодействует с микроконтроллером при помощи интерфейса SPI. НО! Мы пойдем по другому пути 😉 Все дело в том, что STM32 имеют на своем борту готовый периферийный модуль для работы именно с картами памяти, и называется он SDIO.

Вообще взаимодействие с картами памяти заключается в передаче им определенных команд. Некоторые команды требует наличия аргумента, некоторые нет. Команды можно найти в официальной документации на конкретную карту. Так вот встроенный модуль SDIO дает возможность значительно упростить процесс передачи команд, да и вообще процесс работы с внешними картами памяти. Например, вот регистр SDIO_CMD – туда мы просто напросто записываем код команды, которую хотим передать карте. Или вот статусный регистр SDIO_STA – там целых 24 флага на каждый чих, то есть для большого количества событий.

Кстати STM радует еще и добротной документацией на все это дело. Вот, к примеру, подробное описание инициализации для карты памяти SD (аналогично все описано для других типов карт):

Ну, собственно, пора перейти к практическому примерчику. Поковыряем-ка Standard Peripheral Library.

В файле stm32f10x_sdio.h по традиции находим структуры для всевозможной настройки – то есть для выбора источника тактового сигнала, частоты контроллера SDIO, настройки количества передаваемых байт. Там все так щедро откомментировано, что даже не хочется отдельно это повторять)) Просто смотрите:

typedef struct { uint32_t SDIO_ClockEdge; /* Specifies the clock transition on which the bit capture is made. This parameter can be a value of @ref SDIO_Clock_Edge */ uint32_t SDIO_ClockBypass; /* Specifies whether the SDIO Clock divider bypass is enabled or disabled. This parameter can be a value of @ref SDIO_Clock_Bypass */ uint32_t SDIO_ClockPowerSave; /* Specifies whether SDIO Clock output is enabled or disabled when the bus is idle. This parameter can be a value of @ref SDIO_Clock_Power_Save */ uint32_t SDIO_BusWide; /* Specifies the SDIO bus width. This parameter can be a value of @ref SDIO_Bus_Wide */ uint32_t SDIO_HardwareFlowControl; /* Specifies whether the SDIO hardware flow control is enabled or disabled. This parameter can be a value of @ref SDIO_Hardware_Flow_Control */ uint8_t SDIO_ClockDiv; /* Specifies the clock frequency of the SDIO controller. This parameter can be a value between 0x00 and 0xFF. */ } SDIO_InitTypeDef; typedef struct { uint32_t SDIO_Argument; /* Specifies the SDIO command argument which is sent to a card as part of a command message. If a command contains an argument, it must be loaded into this register before writing the command to the command register */ uint32_t SDIO_CmdIndex; /* Specifies the SDIO command index. It must be lower than 0x40. */ uint32_t SDIO_Response; /* Specifies the SDIO response type. This parameter can be a value of @ref SDIO_Response_Type */ uint32_t SDIO_Wait; /* Specifies whether SDIO wait-for-interrupt request is enabled or disabled. This parameter can be a value of @ref SDIO_Wait_Interrupt_State */ uint32_t SDIO_CPSM; /* Specifies whether SDIO Command path state machine (CPSM) is enabled or disabled. This parameter can be a value of @ref SDIO_CPSM_State */ } SDIO_CmdInitTypeDef; typedef struct { uint32_t SDIO_DataTimeOut; /* Specifies the data timeout period in card bus clock periods. */ uint32_t SDIO_DataLength; /* Specifies the number of data bytes to be transferred. */ uint32_t SDIO_DataBlockSize; /* Specifies the data block size for block transfer. This parameter can be a value of @ref SDIO_Data_Block_Size */ uint32_t SDIO_TransferDir; /* Specifies the data transfer direction, whether the transfer is a read or write. This parameter can be a value of @ref SDIO_Transfer_Direction */ uint32_t SDIO_TransferMode; /* Specifies whether data transfer is in stream or block mode. This parameter can be a value of @ref SDIO_Transfer_Type */ uint32_t SDIO_DPSM; /* Specifies whether SDIO Data path state machine (DPSM) is enabled or disabled. This parameter can be a value of @ref SDIO_DPSM_State */ } SDIO_DataInitTypeDef;

Отметим как в SPL реализована передача команд карте памяти. Для этих целей отведена отдельная структура SDIO_CmdInitTypeDef. В поле SDIO_CmdIndex вводим код команды, в поле SDIO_Argument – аргумент команды, также заполняем остальные поля. Осталось как то эти данные запихать в карту micro SD 😉 А для этого нам приготовили функцию:

SDIO_SendCommand (SDIO_CmdInitTypeDef *SDIO_CmdInitStruct)

В качестве аргумента передаем ей как раз таки созданную нами структуру. Для записи данных есть функция – SDIO_WriteData(uint32_t Data) . После вызова этой функции данные окажутся в специально предназначенном для этого регистре – SDIO_FIFO.

Вот так вот осуществляется работа с модулем SDIO в STM32F10x)

Теперь перейдем к практике наконец-то. Я снова буду работать с платой Mini STM32, поскольку добрые китайцы озадачились установкой на нее слота для карты памяти micro SD. Вот схема подключения разъема для карты к микроконтроллеру:

Для написания программы воспользуемся готовым примером для Keil’а – стащим оттуда два файла, в которых реализовано что-то вроде драйвера для работы с картами – это файлы sdcard.c и sdcard.h. Создаем новый проект, цепляем туда эти файлы, а кроме того, естественно, файлы CMSIS и SPL. Вот готовый проект, в который все уже добавлено – остается только написать код функции main())

В файле sdcard.c реализованы всевозможные функции для работы с картой памяти, нам теперь остается их только использовать 😉 Пишем код! Для примера запишем на micro SD 512 байт тестовых данных, а затем попробуем их считать:

// Цепляем нужные файлы #include "stm32f10x.h" #include "sdcard.h" /*******************************************************************/ // Массивы входных и выходных данных и переменная для хранения данных // о нашей карте uint8_t writeBuffer[ 512 ] ; uint8_t readBuffer[ 512 ] ; SD_CardInfo SDCardInfo; /*******************************************************************/ int main() { // Тестовые данные для записи for (uint16_t i = 0 ; i < 512 ; i++ ) { writeBuffer[ i] = i % 256 ; readBuffer[ i] = 0 ; } // Иницилизация карты SD_Init() ; // Получаем информацию о карте SD_GetCardInfo(& SDCardInfo) ; // Выбор карты и настройка режима работы SD_SelectDeselect((uint32_t ) (SDCardInfo.RCA << 16 ) ) ; SD_SetDeviceMode(SD_POLLING_MODE) ; // И вот наконец то запись и чтение SD_WriteBlock(0x00 , writeBuffer, 512 ) ; SD_ReadBlock(0x00 , readBuffer, 512 ) ; while (1 ) { } } /*******************************************************************/

Обратите внимание, что SD карта поддерживает запись блоками по 512 байт.

Если мы запустим программу под отладчиком, то увидим, что считанные данные соответствуют записанным =) Так что эксперимент можем считать удавшимся. На этом на сегодня заканчиваем, до скорых встреч!

  • AndReas говорит:

    Собрать адаптер Memory Stick своими руками не составляет особого труда при знании назначения функциональных выводов той или иной карты памяти. Обычно зовут распиновкой карты памяти или, например, микросхемы, чипа и т.п. Вообще технология проста. Вырезается макет карты памяти MMC (MultiMedia Card) из текстолита. На макете вырезаются 7 дорожек (MMC имеет 7 выводов). Затем, в соответствии с приведенной на рисунке ниже распиновкой, дорожки припаиваются к выводам карты памяти SD (имеет 9 выводов, из которых 2 не используются), microSD (имеет 8 выводов, из которых тоже не используются 2, но обратите внимание, что у карты памяти microSD нет вывода Vcc) или microM2 (распиновка microM2 в смежной теме Адаптер Memory Stick Micro M2). Вот и всё. Адаптер Memory Stick готов.

    P.S. У нас в наличии имеются карты памяти MMC на 1 и 2 Гб. Стоимость, соответственно, 285 и 360 руб. Доставка включена в указанную цену.

    Также можно дешево купить следующие типоразмеры карт памяти:
    - Memory Stick и Memory Stick M2;
    - Secure Digital (SD);
    - Mini SD;
    - Micro SD (TF);
    - Compact Flash;
    - XD;
    - USB Flash Drives различных исполнений и емкости.
    Например, такие:

  • slava говорит:

    да кстати я неочень селен в етих написях. немогби ты на том ресунке провисти дорожки от MicroCD До MMC буду очень признателен.

  • AndReas говорит:

    Вот так будет выглядеть адаптер miсroSD to MMC:

  • slava говорит:
  • В устройствах на микроконтроллерах для хранения больших объемов данных используется внешняя память. Если требуется хранить единицы мегабайт, то подойдут микросхемы последовательной флэш памяти. Однако для больших объемов (десятки -сотни мегабайт) обычно применяются какие-нибудь карты памяти. В настоящий момент наибольшее распространение получили SD и microSD карты, о них я и хотел бы поговорить в серии материалов. В этой статье речь пойдет о подключении SD карт к микроконтроллеру, а в следующих мы будет разбираться как читать или записывать на них данные.

    Распиновка SD и microSD карт

    SD карты могут работать в двух режимах - SD и SPI . Назначение выводов карт и схема подключения зависит от используемого режима. У 8-и разрядных микроконтроллеров AVR нет аппаратной поддержки SD режима, поэтому карты с ними обычно используются в режиме SPI. В 32-х разрядных микроконтроллерах на ядре ARM, например AT91SAM3, интерфейс для работы с картами в SD режиме есть, поэтому там можно использовать любой режим работы.

    Назначение контактов SD карты в SD режиме


    Назначение контактов SD карты в SPI режиме

    Назначение контактов microSD карты в SD режиме



    Назначение контактов microSD карты в SPI режиме



    Подключение SD и microSD карт к микроконтроллеру в SPI режиме

    Напряжение питания SD карт составляет 2.7 - 3.3 В. Если используемый микроконтроллер запитывается таким же напряжением, то SD можно подключить к микроконтроллеру напрямую. Расово верная схема, составленная путем изучения спецификаций на SD карты и схем различных отладочных плат, показана на рисунке ниже. По такой схеме подключены карты на отладочных платах фирм Olimex и Atmel .

    На схеме обозначены именно выводы SD карты, а не разъема.


    L1 - феррит или дроссель, рассчитанный на ток >100 мА. Некоторые его ставят, некоторые обходятся без него. А вот чем действительно не стоит пренебрегать, так это полярным конденсатором C2. Потому что при подключении карты происходит бросок тока, напряжение питания "просаживается" и может происходить сброс микроконтроллера.

    По поводу подтягивающих резисторов есть некоторая неоднозначность. Поскольку SD карты выпускаются несколькими производителями, на них существует несколько спецификаций. В одних документах четко указана необходимость подтягивающих резисторов (даже для неиспользуемых линий - 8, 9), в других документах этих указаний нет (или я не нашел).

    Упрощенный вариант схемы (без подтягивающих резисторов) показан на рисунке ниже. Эта схема проверена на практике и используется в платах фирмы Microelectronika. Также она используется во многих любительских проектах, которые можно найти в сети.



    Здесь сигнальные линии SD карты удерживаются в высоком состоянии микроконтроллером, а неиспользуемые линии (8, 9) никуда не подключены. По идее они должны быть подтянуты внутри SD карты. Далее я буду отталкиваться от этой схемы.

    Если микроконтроллер запитывается напряжением отличным от напряжения питания SD карты, например 5 В, то нужно согласовать логические уровни . На схеме ниже показан пример согласования уровней карты и микроконтроллера с помощью делителей напряжения. Принцип согласования уровней простой - нужно из 5-и вольт получить 3.0 - 3.2 В.



    Линия MISO - DO не содержит делитель напряжения, так как данные по ней передаются от SD карты к микроконтроллеру, но для защиты от дурака можно добавить аналогичный делитель напряжения и туда, на функционировании схемы это не скажется.

    Если использовать для согласования уровней буферную микросхему, например CD4050 или 74AHC125, этих недостатков можно избежать. Ниже приведена схема, в которой согласование уровней выполняется с помощью микросхемы 4050. Это микросхема представляет собой 6 неинвертирующих буферов. Неиспользуемые буферы микросхемы "заглушены".

    Подключение microSD карт аналогичное, только у них немного отличается нумерация контактов. Приведу только одну схему.



    На схемах я рассматривал подключение SD карт к микроконтроллеру напрямую - без разъемов. На практике, конечно, без них не обойтись. Существует несколько типов разъемов и они друг от друга немного отличаются. Как правило, выводы разъемов повторяют выводы SD карты и также содержать несколько дополнительных - два вывода для обнаружения карты в разъеме и два вывода для определения блокировки записи. Электрически эти выводы с SD картой никак не связаны и их можно не подключать. Однако, если они нужны, их можно подключить как обычную тактовую кнопку - один вывод на землю, другой через резистор к плюсу питания. Или вместо внешнего резистора использовать подтягивающий резистор микроконтроллера.

    Подключение SD и microSD карт к микроконтроллеру в SD режиме

    Ну и для полноты картины приведу схему подключения SD карты в ее родном режиме. Он позволяет производить обмен данными на большей скорости, чем SPI режим. Однако аппаратный интерфейс для работы с картой в SD режиме есть не у всех микроконтроллеров. Например у Atmel`овских ARM микроконтроллеров SAM3/SAM4 он есть.



    Шина данных DAT может использоваться в 1 битном или 4-х битном режимах.

    Продолжение следует...

    Мы выводили картинку на дисплей с sd карточки, но в ней были упущены некоторые моменты, первый - подключение самой карточки, второй - была рассмотрена лишь часть функций библиотеки Petit FatFs , давайте остановимся на этих моментах подробнее.

    Общение с карточкой возможно по одному из двух интерфейсов, SPI или SD .



    Надо сказать, что SD интерфейс может работать в однобитном и четырёхбитном режимах.

    Схема подключения карточки по SPI стандартная и выглядит следующим образом, не используемые выводы карточки нужно с помощью резистора 10К подтянуть к питанию.


    Но в любительских конструкциях зачастую пренебрегают подтягивающими резисторами, упрощая схему подключения.

    Надо отметить, что при подключении по SPI карточка очень требовательна к напряжению питания и небольшая просадка питающего напряжения приводит к неработоспособности карточки, это проверено на личном опыте, по поводу SD интерфейса сказать нечего, ещё не пробовал. Это всё писал к тому, что по питанию обязательно ставить конденсаторы . Что касается дросселя, он должен быть рассчитан на ток до 100мА, но ставить его необязательно.

    На схемах, изображённых выше видно, что для работы карточке необходимо 3.3 вольта, соответственно, в линиях передачи данных напряжение не должно выходить за диапазон 0 – 3.3 вольт и тут возникает вопрос, что делать если МК питается от 5 вольт?
    Ответ прост, надо согласовать линии передачи данных, а сделать это можно с помощью обычного резистивного делителя.


    На схеме видно, что линию MISO согласовывать не надо так, как по этой линии данные передаются от карточки к МК .
    На самом деле, мало кто подключает карточку напрямую к МК, гораздо удобнее подключить к МК разъём для карточки или купить шилд с разъемом и всей необходимой обвязкой.

    С подключением разобрались, давайте теперь рассмотрим как пользоваться библиотекой Petit FatFs , которая предназначена для 8-битных микроконтроллеров с малым размером памяти.

    Библиотека состоит из 5 файлов:
    integer.h - заголовочный файл в котором описаны основные типы данных.

    diskio.h - заголовочный файл в котором объявлены прототипы низкоуровневых функций для работы с диском и статусные коды, которые они возвращают.

    diskio.c - в этом файле должны быть реализованы низкоуровневые функции, изначально там "заглушки".

    pffсonf.h - конфигурационный файл.

    pff.h - заголовочный файл в котором объявлены прототипы функций взаимодействия с файловой системой диска.

    pff.c - файл содержит реализации функций для взаимодействия с файловой системой диска.

    Видно, что для того чтобы библиотека заработала необходимо реализовать низкоуровневые функции. Но если речь идет о AVR или PIC, для них сайте можно скачать пример работы с библиотекой, в котором есть файл mmc , в нем уже реализованы низкоуровневые функции. Также необходимо задать конфигурацию библиотеки в файле pff.h и написать функции необходимые для работы SPI.

    Функции Petit FatFs.

    FRESULT pf_mount (FATFS*) - функция монтирует/демонтирует диск. Эту функцию необходимо вызывать до начала работы с диском, если вызвать функцию с нулевым указателем диск демонтируется. Функция может быть вызвана в любой момент времени.

    Параметры
    FATFS* fs - указатель на объект типа FATFS, описание этой структуры можно посмотреть в файле pff.h. Нам надо всего лишь объявить переменную такого типа.

    Возвращаемые значения:
    FR_OK (0)
    FR_NOT_READY - устройство не может быть инициализировано
    FR_DISK_ERR - возникла ошибка во время чтения с диска
    FR_NO_FILESYSTEM - на диске нет правильного раздела FAT

    FATFS fs;//объявляем объект типа FATFS //монтируем диск if (pf_mount(&fs) == FR_OK) { //диск смонтирован, работаем с ним //демонтируем диск pf_mount(NULL); } else { //не удалось смонтировать диск }

    FRESULT pf_open (const char* path) - функция открывает существующий файл. После того как файл открыт с ним можно работать, то есть читать из него и записывать в него. С открытым файлом можно работать до тех пор, пока не будет открыт другой файл. Функция может быть вызвана в любой момент времени.

    Параметры
    const char* path - указатель на строку, указывающую путь к файлу. Путь надо указывать полностью относительно корневой директории, разделяя директории слэшем.

    Возвращаемые значения:
    FR_OK (0) - возвращается в случае успешного выполнения функции
    FR_NO_FILE - файл не найден
    FR_DISK_ERR - ошибка диска
    FR_NOT_ENABLED - диск не был смонтирован

    FATFS fs;//объявляем объект типа FATFS //монтируем диск if (pf_mount(&fs) == FR_OK) { //открываем файл лежащий в корневой директории if(pf_open("hello.txt") == FR_OK) { //делаем что-то } //открываем файл лежащий в папке new if(pf_open("new/hello.txt") == FR_OK) { //делаем что-то } //демонтируем диск pf_mount(NULL); } else { //не удалось смонтировать диск }

    FRESULT pf_read(void* buff, WORD btr, WORD* br) - функция читает указанное количество байт из файла и сохраняет их в буфер. Если количество прочитанных байт меньше чем указано, значит был достигнут конец файла.
    #define _USE_READ 1

    Параметры:
    void* buff - указатель на буфер, в котором сохраняются прочитанные данные
    WORD btr - количество байт, которые нужно прочитать
    WORD* br - указатель на переменную, в которой хранится количество прочитанных байт.

    Возвращаемые значения:
    FR_OK (0) - возвращается в случае успешного выполнения функции
    FR_DISK_ERR - ошибка диска
    FR_NOT_OPENED - файл не был открыт
    FR_NOT_ENABLED - диск не был смонтирован

    FATFS fs;//объявляем объект типа FATFS BYTE buff;//буфер для чтения файла WORD br; //счетчик прочитанных байт //монтируем диск if (pf_mount(&fs) == FR_OK) { //открываем файл лежащий в корневой директории if(pf_open("hello.txt") == FR_OK) { //читаем из него 10 байт pf_read(buff, 10, &br); if(br != 10) { //если br не равно 10 //значит мы достигли конца файла } } }

    FRESULT pf_write(const void* buff, WORD btw, WORD* bw) - функция позволяет записывать данные в открытый файл. Для того чтобы функция работала в файле pffconf.h надо записать
    #define _USE_WRITE 1

    Параметры:
    void* buff - указатель на буфер, который хотим записать, нулевое значение финализирует запись
    WORD btw - количество байт, которые хотим записать
    WORD* bw - указатель на переменную, хранящий количество байт, которые удалось записать. Анализируя, эту переменную можно узнать был ли достигнут конец файла.

    Возвращаемые значения:
    FR_OK (0) - возвращается в случае успешного выполнения функции
    FR_DISK_ERR - ошибка диска
    FR_NOT_OPENED - файл не был открыт
    FR_NOT_ENABLED - диск не был смонтирован

    Из-за того, что библиотека рассчитана на микроконтроллеры с малым объемом памяти, эта функция имеет ряд ограничений:

    • нельзя создавать новые файлы, а записывать можно только в существующие
    • нельзя увеличивать размер файла
    • нельзя обновить временную метку
    • операцию записи можно начать/остановить только на границе сектора
    • файловый атрибут "только для чтения" не может запретить запись

    Для того чтобы понять предпоследний пункт, надо знать, что память карточки разбита на блоки(сектора) по 512 байт и запись можно начать только с начала сектора . Таким образом если мы хотим записать 1000 байт, то первый сектор запишется полностью, а во второй запишется только 488 байт, а оставшиеся 24 байта заполнятся нулями.

    Для записи в открытый файл надо выполнить следующие действия:

    • установить указатель на границу сектора, если установить не на границу, то указатель будет округлен до нижней границы сектора
    • вызвать функцию записи нужное количество раз
    • финализировать запись, вызвав функцию с нулевым указателем

    Для того, чтобы привести пример работы функции записи необходимо рассмотреть ещё одну функцию.

    FRESULT pf_lseek(DWORD offset) - устанавливает указатель чтения/записи в открытом файле. Устанавливать указатель можно абсолютным или относительным смещением, для абсолютного смещения необходимо передать в функцию число
    pf_lseek(5000);
    для относительного, передать значение указателя на текущую позицию fs.fptr и величину смещения
    pf_lseek(fs.fptr + 3000);
    Для того чтобы функция работала в файле pffconf.h надо записать
    #define _USE_LSEEK 1

    Параметры:
    DWORD offset - количество байт, на которые нужно сместить указатель.

    Возвращаемые значения:
    FR_OK (0) - возвращается в случае успешного выполнения функции
    FR_DISK_ERR - ошибка диска
    FR_NOT_OPENED - файл не был открыт

    Записать данные в файл можно следующим образом.
    FATFS fs;//объявляем объект типа FATFS BYTE buff;//буфер для чтения файла WORD br; //счетчик прочитанных байт //монтируем диск if (pf_mount(&fs) == FR_OK) { //открываем файл лежащий в корневой директории if(pf_open("hello.txt") == FR_OK) { //устанавливаем указатель на первый сектор pf_lseek(0); //записываем pf_write(buff, 10, &br); //финализируем запись pf_write(0, 0, &br); } }

    Также оставляю тут кусок реально работающего кода, в котором используются все выше описанные функции.
    #define F_CPU 8000000UL #define buff_size 10 #include #include #include "diskio.h" #include "pff.h" #include "spi.h" FATFS fs;//объявляем объект типа FATFS BYTE read_buff;//буфер для чтения файла BYTE write_buff = "hello word";////буфер для записи в файл UINT br; //счетчик прочитанных байт int main(void) { //монтируем диск if (pf_mount(&fs) == FR_OK) { //открываем файл лежащий в папке new if(pf_open("new/hello.txt") == FR_OK) { //устанавливаем указатель записи pf_lseek(0); //записываем pf_write(write_buff, buff_size, &br); //финализируем запись pf_write(0, 0, &br); //устанавливаем указатель чтения pf_lseek(0); //читаем то, что записали pf_read(read_buff, buff_size, &br); if(br != buff_size) { //если br не равно buff_size //значит мы достигли конца файла } } //демонтируем диск pf_mount(NULL); } while(1) { } }

    FRESULT pf_opendir(DIR* dp, const char * path) - функция открывает существующую директорию и создает указатель на объект типа DIR, который будет использоваться для получения списка файлов открытой директории.
    Для того чтобы функция работала в файле pffconf.h надо записать
    #define _USE_DIR 1

    Параметры:
    DIR *dp - указатель на переменную типа DIR.

    const char * path - указатель на строку, которая содержит путь к директории, директории разделяются слэшем

    Возвращаемые значения:
    FR_OK (0) - возвращается в случае успешного выполнения функции
    FR_NO_PATH - не удалось найти путь
    FR_NOT_READY - не удалось инициализировать диск
    FR_DISK_ERR - ошибка диска
    FR_NOT_ENABLED - диск не был смонтирован

    //объявляем переменные FATFS fs; DIR dir; //монтируем диск pf_mount(&fs); //открываем директорию pf_opendir(&dir, "MY_FOLDER");

    FRESULT pf_readdir(DIR* dp, FILINFO* fno) - функцию позволяет прочитать содержимое директории. Для этого нужно открыть директорию с помощью функции pf_opendir() и вызывать pf_readdir(). Каждый раз при вызове функция будет возвращать название объекта(папки/файла) лежащего в указанной директории. Когда она пройдется по всем объектам, вернет нулевую строку в элементе массива fno.fname.
    Для того чтобы функция работала в файле pffconf.h надо записать
    #define _USE_DIR 1

    Параметры:
    DIR *dp - указатель на переменную типа DIR, которая должна быть предварительно объявлена

    FILINFO *fno - указатель на переменную типа FILINFO, которая должна быть предварительно объявлена.

    Возвращаемые значения:
    FR_OK - успешное завершение функции
    FR_DISK_ERR - ошибка диска
    FR_NOT_OPENED - не открыта директория

    FATFS fs; FRESULT res; FILINFO fno; DIR dir; //монтируем диск pf_mount(&fs); //открываем директорию res = pf_opendir(&dir, MY_FOLDER); //читаем содержимое директории for(;;){ res = pf_readdir(&dir, &fno); //проверяем не возникло ли ошибок при чтении // и есть ли еще файлы в указанной директории if ((res != FR_OK) || (fno.fname == 0)){ break; } //выводим удобным способом fno.fname usart_sendStr(fno.name); usart_sendStr(/r); }

    Ну и напоследок оставлю тут рабочий проект

    Artem Makarov aka Robin

    27.09.2014

    В последнее время всё чаще приносят на восстановление информации флешки, выполненные на монокристальной основе, так называемые монолиты. Сегодня речь пойдёт о процессе восстановления данных с такого монолита, - карты памяти SD которую прислал партнер из города Кемерово. На карточке была записана видеосъемка свадьбы, и когда торжество успешно окончилось и пора было приступать к монтажу и выпуску подарочных DVD, флешка приказала долго жить.

    Восстановление монолитных SD карт памяти

    Примечательно, что внешне не понять, - это "классическая" SD карточка, с платой текстолита, NAND памятью и контроллером, или монокристалл. До тех пор, пока не вскроется пластиковый корпус. Чаще всего выход таких карт памяти из строя обусловлен сбоем в таблицах трансляции. Реже - электромеханическими повреждениями.

    Для восстановления файлов с такой карточки первым делом надо вычитать дампы с кристалла. Для этого механическим (очисткой и шлифованием) путем удаляется защитный лак, скрывающий дорожки и контактные площадки монолита. После чего флешка начинает выглядеть так:

    Дорожки и распиновка монолитной SD карты

    Видны контактные площадки, к которым подключены шина данных, chip enable, read/write busy, питание и т.п. Разумеется ничего не промаркировано, и даташитов, в которых подробно расписано, что куда подключать, в свободном доступе так же нету. Распиновку можно отыскать либо взяв точно такую же исправную флешку (а их великое множество типов, и найдя такой же по виду условный SD Kingston, можно получить внутри совершенно по другому сделанный девайс) и вооружившись логическим анализатором кропотливо изыскивать что куда и зачем. Либо купив распиновку у человека/конторы, которые такую работу за тебя уже сделали.

    В итоге получается нечто такое:

    Или такое:

    Теперь в полученных дампах нужно устранить внутренние преобразования. Первым делом убрать маску XOR, которую накладывал при записи информации в ячейки NAND контроллер флешки. С этой маской сектор выглядит так:

    а когда нужная маска XOR подобрана и применена, то сектор приобретает осмысленный вид:

    После устранения XOR преобразований нужно выставить корректную геометрию сектора, описать маркеры и область ECC корректировки данных. С помощью алгоритма ECC поправить битовые ошибки. Выяснить, в какой последовательности были расположены блоки, их размер. Поскольку тип контроллера неизвестен (это ж монолит!), то надо определить, каким сборщиком пользоваться в данном конкретном случае. Будет ли это сборка финального образа по маркеру сектора или по остаткам таблиц трансляции.

    После того, как образ собран, проверить конфликтные блоки, имеющие одинаковый маркер, на актуальность и подставить в образ те, с которыми итоговый результат будет наилучшим. Получив привычный образ с файловой системой можно открыть его в любом дисковом редакторе и выгрузить нужные пользователю файлы.

    Безусловно, многие операции достаточно автоматизированы, но тем не менее объем работ при восстановлении данных с монолитов (монокристаллов) весьма велик. Далеко не каждый инженер или компания, восстанавливающая информацию, горит желанием с такими работами связываться. И ценник на такого рода восстановление весьма далёк от понятия "бюджетный".

    Вот еще один случай на примере восстановления SD Sandisk - такой же монолит, только внутри чуть по-другому сделан:

    Готово для чтения

    Восстановление MicroSD флешек

    А вот как выглядят контактные площадки на Micro SD карточке. Сразу нужно оговориться, что это только несколько примеров из множества вариантов компоновки.

    А вот вариант распиновки монолитной карты памяти Memory Stick Pro Duo

    Вот - не сказать что монолит, но и не обычная USB флешка. Микросхема памяти (кристалл) залита компаундом (клеем).

    А вот как выглядит монолитная карта памяти Olympus XD Picture card, с которой потребовалось восстановить фотоснимки:

    Восстановление поломанных Микро СД

    Отдельно стоит упомянуть об успешном выполнении задач по восстановлению информации с MicroSD флешек, сломанных на части, с отломанным куском, с трещинами на корпусе и т.п. Несколько примеров на картинках ниже:

    Во всех случаях, когда речь идет о флешке разломанной на куски, с отломанной частью и т.п. есть возможность восстановления информации если остался цел кристалл NAND. Например в микро-флешке Сандиск из примера ниже в результате неаккуратной эксплуатации откололся кусок с повреждением дорожек, отмеченных красным овалом.

    Лаборатория "Хардмастер" одна из немногих, имеющих опыт и квалификацию в восстановлении данных с монолитных USB, SD, microSD, Memory Stick и т.п. карт памяти. Если на вашей монолитной поломанной флешке остались важные файлы которые хотелось бы вернуть - обращайтесь к нам!